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ON DEDUCTION OF CERTAIN NONILINEAR DIFFERENTTIAL
EQUATIONS FROM THETR SOLUTIONS

By Murray Tobak
Ames Research Center

SUMMARY

A method is presented for deducing certain nonlinear differential
equations from their solutions. The method, relevant to equations of the type
% + e[xg(x®) + xk(x3)] + v2x = 0, enables the deduction of explicit forms for
the nonlinear elements g(x2) and k(x2). It should apply whenever the solu-
tion can be assumed to be describable by the first approximation of the
Kryloff-Bogoliuboff method.

INTRODUCTION

Many fields of mechanics require the study of oscillatory systems
governed by nonlinear second-order differential equations. A wide class of
such equations yields to treatment by the method of Kryloff and Bogoliuboff
(ref. 1). In particular, the first gpproximation affords a ready means of
finding a solution capeble of revealing the main features of the oscillatory
system.

It does not seem to have been appreciated that the first spproximation
also lends itself readily to a problem which is the inverse of the usual one;
namely, given the solution, find the governing differential equation. This
problem arises continually, for example, in experimental studies of aircraft
dynemics. Here, the result of an experiment is often a time history of an
oscillation. The analyst must extract from this history the form and magni-
tude of the aerodynamic quantities which are judged to influence the motion.
In effect, therefore, the analyst must reconstruct the differential equation
which has ylelded the observed record. The purpose of this note is to show
how the first approximation of the Kryloff-Bogoliuboff method may be adapted
to this end for a certain class of equations. TFor equations of the type
% + e[xeg(x®) + xk(x2)] + v@x = 0, it is shown that, given the solution,
explicit forms for the nonlinear elements g(x2) and k(x2) are deducible from
inversions of Abel integral equations.

A note on precedents: The method proposed here is of such simplicity
that it raises the question whether it has not been proposed before. A search
for precedents has disclosed one, applicable, however, to another class of
equations. In reference 2, G. Plato has shown by a heuristic argument (con-
firmed by the method proposed here) that the form of the nonlinear element
(%) of the equation X + ef(x) + v?x = 0 also can be deduced from an Abel
integral equation. It is easy to envisage other classes of equations which



will yield to the same treatment. It is probable that similar methods, appli-
cable to still other classes of eqguations, have been or remain to be
discovered.

ANATYSIS

The First Approximation

The analysis of reference 1 is concerned with differential equations of
the form

%+ V3 + ef(x,%x) = 0 (1)

where € must be a small guantity. Since, with € sufficiently small, x
will not deviate greatly from the harmonic solution x = a sin(vt + @), a
solution is sought in the form

x = a(t)sin ¥(t) (2)
where

Y(t) = vt + @(t) (3)
It is found that, to a first order in €, 4 and & must satisfy the relations

27

4 = Sy ) f(a sin @, av cos Q)cos P AP (4)

21
J[ f(a sin @, av cos @) sin ¢ AP (5)
(o]

E=1
[}

2nav

When equation (1) is given explicitly and the solution for x is desired,
equation (2) provides a solution, a(t) and V(t) being determinable directly
from equations (4) and (5).



The Inverse Problem

Now consider the inverse problem. ILet it be assumed that the solution is
known in the form of equation (2); that is, a(t) and V¥(t) are known functions.
Tt is desired to find the form of equation (1) under the assumption that the
solution is adequately described by the first spproximation. This assumption
enables one to seek a solution for f(x,%) through equations (4) and (5).

Consider a class of problems for which it is possible to specify the form
of f(x,%X) to the extent shown in equation (6)

F(x,%) = xg(x®) + xk(x7) (6)

This form is chosen principally on physical grounds, anticipating in particu-
lar its pertinence to aerodynamic applications. In reference 3 it is shown
that, at least for low reduced frequencies, equation (6) is a general form for
the aerodynamic pitching moment when x is identified with angle of attack.
.The specification that g and k %be even functions of x again envisages
aerodynamic applicationse.

Inserting equation (6) in equations (&) and (5) gives

on
a = - g%v\jr cos @llav cos ¢)g(a2 sin2 @) + (a sin @)k(a? sin? @)]de
o (1)
" € an 5 ao . .
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In equation (7), the term involving k, being odd about ¢ = m, contributes
nothing to the integral and may be dropped. In equation (8), on the other

hand, the term involving g may be dropped for the same reason. After the
change in variable ¢ = a sin @, equations (7) and (8) take the form
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With a and ¥ being known functions, equations (9) and (10) are a pair of
integral equations, the first involving the unknown function g(§2) alone,
the second involving the unknown function k(&2).

Inversions

Consider first equation (9). Put a2 = 6, £% = A, and let

g(M)
iji— = a(N) (11)

so that

b= - %Efi/e =N a(M)an (12)

Since 6 is known, it may be assumed that 6 is also known, and moreover,
that & can be represented, albeit often only numerically, as a function .

of 6.1 Writing
6 = F(6) (13)

and differentiating with respect to 6 in equation (12) yields

o

[¢}

(14)

Equation (1%) is recognized as Abel's integral equation, which has a particu-
larly simple inversion-(see, e.g., ref. 4)y. Tt is

ITn practice, it may be necessary to have a number of records, covering a
range of initial conditions, to ensure an adequate representation of this
dependency. Changes in initial conditions should only extend the range of the
dependency without destroying its uniqueness; the function 6 = F(8), in other
words, should be independent of the initial conditions.
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This determines ¢, and hence g, through equation (11).

Equation (10) is treated similarly. Again putting a% = @8, % = N, and
letting

YA &(A) = p(N) (16)
yields
vo(¥ - v) =§[93% (a7)
With

vo(¥ - v) = c(o) (18)

the inversion of equation (17) is

0
po) -1 & [ SN (29)

This determines p, and hence Xk, through equation (16).

Example

To illustrate the method, we adopt a problem considered in reference 3.
Tet us assume that from one or several records of the oscillatory system, it
has been found possible to represent the solution x(t) as
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Note that x approaches a limit motion as t - «. From equation (2) we
identify a, ¥, and v as
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In the determination of g, it is required first that 6 be written as a
function of 6. A straightforward calculation yields

6 =F(6) = - ﬁ o(o - L) (22)

One notes that, as required, F(o) is independent of the initial conditions.?®
Inserting F'(6) in equation (15) and performing the indicated operations
gives

ale) = j%(e - 1) (23)
whence, from equation (11)
g(e) =6 -1 (2k)

The determination of k proceeds similarly. Writing V¥ - v as a function
of 6 ylelds

a(e) = - g neo? (25)

Tnserting G in equation (19) leads to

p(8) = -ue>® (26)

“The advisability of having a number of records, covering a range of
initial conditions, is emphasized in the case of limit motions. Here, for
certain initial conditions, 6 may be constant over all or a major part of the
record. In the present case, for example, when xg = 2, 6 = 4. If this were
the only record available, one might erroneously conclude that é, and hence
g, were identically zero for all 6.
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so that, from equation (16)
k(e) = -pe (27)

Hence, in equation (6) |

Px,%x) = %x(x2 - 1) - px3 (28)

so that the equation of motion is, correctly (e.g., ref. 3)
% - ex(1 - x3) +x(1 - epx®) = 0 (29)
DISCUSSION

The validity of the proposed method for determining the form of the
governing differential equation from its solution rests entirely on the
assumption that the solution be describable by the first approximation of the
Kryloff-Bogoliuboff method. Unfortunately, it is not invariably the case that
the appearance of the solution itself is sufficient evidence to justify the
assumption a priori; an a posteriori Justification i1s necessary.

Having obtained a form for the differential equation on the basis of the
assumption, one should determine that over the range of amplitudes and fre-
quencies of the solution from which the equation has been derived, the
inequalities

max | eg(x®) | << v
(30)

max Iek(xz)l 4%

have been satisfied. Failure to satisfy the inequalities must be taken as an
indication that the derived equation may be incorrect. It is advised that in
this case, a new evaluation of the nonlinear elements be made on the basis of
a smaller range of amplitudes and frequencies of the solution, such that the
inequalities are satisfied. 1If analytic expressions are matched to the non-
linear elements so determined, the resulting differential equation then may
be integrated numerically over an extended range of amplitudes and frequencies
to check whether the solution it yields matches that part of the solution
which had to be excluded in determining the equation.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 9, 1965
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